
ridgeplot

Tomas Pereira de Vasconcelos

Aug 19, 2022

GETTING STARTED

1 Dependencies 3

2 Getting started 5

3 API Reference 9

4 Changelog 11

5 Alternatives 13

6 Contributing 15

Index 21

i

ii

ridgeplot

The ridgeplot python library aims at providing a simple API for plotting beautiful ridgeline plots within the extensive
Plotly interactive graphing environment.

Bumper stickers:

• Do one thing, and do it well!

• Use sensible defaults, but allow for extensive configuration!

The source code is currently hosted on GitHub at: https://github.com/tpvasconcelos/ridgeplot

Install and update using pip:

pip install -U ridgeplot

GETTING STARTED 1

https://www.data-to-viz.com/graph/ridgeline.html
https://plotly.com/python/
https://github.com/tpvasconcelos/ridgeplot
https://pip.pypa.io/en/stable/quickstart/

ridgeplot

2 GETTING STARTED

CHAPTER

ONE

DEPENDENCIES

• plotly - the interactive graphing backend that powers ridgeplot

• statsmodels - Used for Kernel Density Estimation (KDE)

• numpy - Supporting library for multi-dimensional array manipulations

3

https://plotly.com/
https://www.statsmodels.org/
https://numpy.org/

ridgeplot

4 Chapter 1. Dependencies

CHAPTER

TWO

GETTING STARTED

2.1 Sensible defaults

Get started with a simple function call to ridgeplot() with sensible (plotly) defaults.

import numpy as np

from ridgeplot import ridgeplot

Put your real samples here...
np.random.seed(0)
synthetic_samples = [np.random.normal(n / 1.2, size=600) for n in range(9, 0, -1)]

Call the `ridgeplot()` helper, packed with sensible defaults
fig = ridgeplot(samples=synthetic_samples)

The returned Plotly `Figure` is still fully customizable
fig.update_layout(height=500, width=800)

show us the work!
fig.show()

5

ridgeplot

2.2 Fully configurable

In this example, we will be replicating the first ridgeline plot example in this from Data to Viz post, which uses the
probly dataset. You can find the plobly dataset on multiple sources like in the bokeh python interactive visualization
library. I’ll be using the same source used in the original post.

import numpy as np
import pandas as pd
from ridgeplot import ridgeplot

Get the raw data
df = pd.read_csv("https://raw.githubusercontent.com/bokeh/bokeh/main/bokeh/sampledata/_
→˓data/probly.csv")

Let's grab only the subset of columns displayed in the example
column_names = [

"Almost Certainly", "Very Good Chance", "We Believe", "Likely",
"About Even", "Little Chance", "Chances Are Slight", "Almost No Chance",

]
df = df[column_names]

Not only does 'ridgeplot(...)' come configured with sensible defaults
but is also fully configurable to your own style and preference!
fig = ridgeplot(

samples=df.values.T,
bandwidth=4,
kde_points=np.linspace(-12.5, 112.5, 400),
colorscale="viridis",
colormode="index",
coloralpha=0.6,
labels=column_names,
spacing=5 / 9,

)

Again, update the figure layout to your liking here
fig.update_layout(

title="What probability would you assign to the phrase <i>“Highly likely”</i>?",
height=650,
width=800,
plot_bgcolor="rgba(255, 255, 255, 0.0)",
xaxis_gridcolor="rgba(0, 0, 0, 0.1)",
yaxis_gridcolor="rgba(0, 0, 0, 0.1)",
yaxis_title="Assigned Probability (%)",

)
fig.show()

6 Chapter 2. Getting started

https://www.data-to-viz.com/graph/ridgeline.html
https://raw.githubusercontent.com/bokeh/bokeh/main/bokeh/sampledata/_data/probly.csv
https://raw.githubusercontent.com/zonination/perceptions/master/probly.csv

ridgeplot

2.2. Fully configurable 7

ridgeplot

8 Chapter 2. Getting started

CHAPTER

THREE

API REFERENCE

ridgeplot.ridgeplot(samples=None, densities=None, kernel: str = 'gau', bandwidth='normal_reference',
kde_points=500, colorscale: Union[str, Iterable[Tuple[float, str]]] = 'plasma', colormode:
str = 'mean-means', coloralpha: Optional[float] = None, labels=None, linewidth: float =
1.4, spacing: float = 0.5, show_annotations: bool = True, xpad: float = 0.05)→
plotly.graph_objs._figure.Figure

Creates and returns a Plotly figure with a beautiful ridgeline plot.

You have to specify one of: samples or densities. If you specify both samples and densities arguments, a
ValueError exception will be raised! One of these arguments should always remain set to None. See samples
and densities bellow for more information.

Args:

samples If samples data is specified, Kernel Density Estimation (KDE) will be computed. See kernel,
bandwidth, and kde_points for more details and KDE configuration options.

densities If densities arrays are specified instead, the KDE step will be skipped and all associated ar-
guments ignored. Each density array should have shape (2, 𝑁), but 𝑁 may vary with each array.

kernel The Kernel to be used during Kernel Density Estimation. The default is a Gaussian Kernel ("gau").
Choices are:

• "biw" for biweight

• "cos" for cosine

• "epa" for Epanechnikov

• "gau" for Gaussian.

• "tri" for triangular

• "triw" for triweight

• "uni" for uniform

bandwidth The bandwidth to use during Kernel Density Estimation. The default is normal_reference.
Choices are:

• "scott" - 1.059 * A * nobs ** (-1/5.), where A is min(std(x),IQR/1.34)

• "silverman" - .9 * A * nobs ** (-1/5.), where A is min(std(x),IQR/1.34)

• "normal_reference" - C * A * nobs ** (-1/5.), where C is calculated from the kernel. Equiva-
lent (up to 2 dp) to the "scott" bandwidth for gaussian kernels. See bandwidths.py.

• If a float is given, its value is used as the bandwidth.

• If a callable is given, it’s return value is used. The callable should take exactly two parameters,
i.e., fn(x, kern), and return a float, where:

9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError

ridgeplot

– x: the clipped input data

– kern: the kernel instance used

kde_points This argument controls the points at which KDE is computed. If an int value is passed (de-
fault), the densities will be evaluated at kde_points evenly spaced points between the min and max
of each set of samples. However, you may also specify a custom range by instead passing an array of
points. This array should be one-dimensional.

colorscale Any valid Plotly color-scale or a str with a valid named color-scale. Use
get_all_colorscale_names() to see which names are available or check out Plotly’s built-
in color-scales.

colormode This argument controls the logic for choosing the color filling of each ridgeline trace. Each
option provides a different method for calculating the colorscalemidpoint of each trace. The default
is mode is "mean-means". Choices are:

• "index" - uses the trace’s index. e.g. if 3 traces are specified, then the midpoints will be [0, 0.5,
1].

• "mean-minmax" - uses the min-max normalized (weighted) mean of each density to calculate the
midpoints. The normalization min and max values are the minimum and maximum x-values from
all densities, respectively.

• "mean-means" - uses the min-max normalized (weighted) mean of each density to calculate the
midpoints. The normalization min and max values are the minimum and maximum mean values
from all densities, respectively.

coloralpha If None (default), this argument will be ignored and the transparency values of the specifies
color-scale will remain untouched. Otherwise, if a float value is passed, it will be used to overwrite
the transparency (alpha) of the color-scale’s colors.

labels A list of string labels for each trace. The default value is None, which will result in auto-generated
labels of form “Trace n”. If, instead, a list of labels is specified, it must be of the same size/length as
the number of traces.

linewidth The traces’ line width (in px).

spacing The vertical spacing between density traces, which is defined in units of the highest distribution
(i.e. the maximum y-value).

show_annotations If True (default), it will show the label names as “y-tick-labels”.

xpad Specifies the extra padding to use on the x-axis. It is defined in units of the range between the
minimum and maximum x-values from all distributions.

.._cs: https://plotly.com/python/builtin-colorscales/

Returns:

plotly.graph_objects.Figure A Plotly Figure with a ridgeline plot. You can further customize this
figure to your liking (e.g. using the update_layout() method).

Raises:

ValueError If both samples and densities arguments are not None, or if neither samples or
densities are specified.

ridgeplot.get_all_colorscale_names()→ Tuple[str]
Returns a tuple with all available colorscale names.

10 Chapter 3. API Reference

https://plotly.com/python/builtin-colorscales/
https://plotly.com/python-api-reference/generated/plotly.graph_objects.html#plotly.graph_objects.Figure
https://plotly.com/python-api-reference/generated/plotly.graph_objects.html#plotly.graph_objects.Figure
https://plotly.com/python-api-reference/generated/plotly.graph_objects.html#plotly.graph_objects.Figure.update_layout
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str

CHAPTER

FOUR

CHANGELOG

This document outlines the list of changes to ridgeplot between each release. For full details, see the commit logs.

4.1 Unreleased changes

• . . .

4.2 0.1.19

• . . .

4.3 0.1.18

• . . .

4.4 0.1.17

• Automate the release process. See .github/workflows/release.yaml, which issues a new GitHub release whenever
a new git tag is pushed to the master branch by extracting the release notes from the changelog.

• Fix automated release process to PyPI. (#27)

4.5 0.1.16

• Upgrade project structure, improve testing and CI checks, and start basic Sphinx docs. (#21)

• Implement LazyMapping helper to allow ridgeplot._colors.PLOTLY_COLORSCALES to lazy-load from
colors.json (#20)

11

https://github.com/tpvasconcelos/ridgeplot/commits/
https://github.com/tpvasconcelos/ridgeplot/pull/27
https://github.com/tpvasconcelos/ridgeplot/pull/21
https://github.com/tpvasconcelos/ridgeplot/pull/20

ridgeplot

4.6 0.1.14

• Remove named_colorscales from public API (#18)

4.7 0.1.13

• Add tests for example scripts (#14)

4.8 0.1.12

4.8.1 Internal

• Update and standardise CI steps (#6)

4.8.2 Documentation

• Publish official contribution guidelines (CONTRIBUTING.md) (#8)

• Publish an official Code of Conduct (CODE_OF_CONDUCT.md) (#7)

• Publish an official release/change log (CHANGES.md) (#6)

4.9 0.1.11

• colors.json was missing from the final distributions (#2)

4.10 0.1.0

• Initial release!

12 Chapter 4. Changelog

https://github.com/tpvasconcelos/ridgeplot/pull/18
https://github.com/tpvasconcelos/ridgeplot/pull/14
https://github.com/tpvasconcelos/ridgeplot/pull/6
https://github.com/tpvasconcelos/ridgeplot/pull/8
https://github.com/tpvasconcelos/ridgeplot/pull/7
https://github.com/tpvasconcelos/ridgeplot/pull/6
https://github.com/tpvasconcelos/ridgeplot/pull/2

CHAPTER

FIVE

ALTERNATIVES

• plotly - from examples/galery

• seaborn - from examples/galery

• bokeh - from examples/galery

• matplotlib - from blogpost

• joypy - Ridgeplot library using a matplotlib backend

13

https://plotly.com/python/violin/#ridgeline-plot
https://seaborn.pydata.org/examples/kde_ridgeplot
https://docs.bokeh.org/en/latest/docs/gallery/ridgeplot.html
https://matplotlib.org/matplotblog/posts/create-ridgeplots-in-matplotlib/
https://github.com/sbebo/joypy

ridgeplot

14 Chapter 5. Alternatives

CHAPTER

SIX

CONTRIBUTING

Thank you for your interest in contributing to ridgeplot!

The contribution process for ridgeplot should start with filing a GitHub issue. We define three main categories of issues,
and each category has its own GitHub issue template

• Feature requests

• Bug reports

• Documentation fixes

After the implementation strategy has been agreed on by a ridgeplot contributor, the next step is to introduce your
changes as a pull request (see Pull Request Workflow) against the ridgeplot repository. Once your pull request is merged,
your changes will be automatically included in the next ridgeplot release. Every change should be listed in the ridgeplot
Changelog.

The following is a set of (slightly opinionated) rules and general guidelines for contributing to ridgeplot. Emphasis on
guidelines, not rules. Use your best judgment, and feel free to propose changes to this document in a pull request.

6.1 Development environment

Here are some guidelines for setting up your development environment. Most of the steps have been abstracted away
using the make build automation tool. Feel free to peak inside Makefile at any time to see exactly what is being run,
and in which order.

First, you will need to clone this repository. For this, make sure you have a GitHub account, fork ridgeplot to your
GitHub account by clicking the Fork button, and clone the main repository locally (e.g. using SSH)

git clone git@github.com:tpvasconcelos/ridgeplot.git
cd ridgeplot

You will also need to add your fork as a remote to push your work to. Replace {username}with your GitHub username.

git remote add fork git@github.com:{username}/ridgeplot.git

The following command will 1) create a new virtual environment (under .venv), 2) install ridgeplot in editable mode
(along with all it’s dependencies), and 3) set up and install all pre-commit hooks. Make sure you always work within
this virtual environment (i.e., $ source .venv/bin/activate). On top of this, you should also set up your IDE to
always point to this python interpreter. In PyCharm, open Preferences -> Project: ridgeplot -> Project
Interpreter and point the python interpreter to .venv/bin/python.

make init

15

https://github.com/tpvasconcelos/ridgeplot/issues/new/choose
https://en.wikipedia.org/wiki/Make_(software)
https://github.com/tpvasconcelos/ridgeplot/blob/master/Makefile
https://docs.github.com/en/github/getting-started-with-github/fork-a-repo#step-2-create-a-local-clone-of-your-fork
https://github.com/join
https://github.com/tpvasconcelos/ridgeplot/fork
https://pip.pypa.io/en/stable/cli/pip_install/#install-editable
https://pre-commit.com/

ridgeplot

The default and recommended base python is python3.7 . You can change this by exporting the BASE_PYTHON
environment variable. For instance, you could instead run:

BASE_PYTHON=python3.8 make init

If you need to use jupyter-lab, you can install all extra requirements, as well as set up the environment and jupyter
kernel with

make init-jupyter

Bonus: If you need to use plotly inside a jupyter-lab notebook, just run

make jupyter-plotly

6.2 Pull Request Workflow

1. Always confirm that you have properly configured your Git username and email.

git config --global user.name 'Your real name'
git config --global user.email 'Your email address'

2. Each release series has its own branch (i.e. MAJOR.MINOR.x). If submitting a documentation or bug fix contri-
bution, branch off of the latest release series branch.

git fetch origin
git checkout -b <YOUR-BRANCH-NAME> origin/2.0.x

Otherwise, if submitting a new feature or API change, branch off of the “master” branch

git fetch origin
git checkout -b <YOUR-BRANCH-NAME> origin/main

3. Apply and commit your changes.

4. Include tests that cover any code changes you make, and make sure the test fails without your patch.

5. Add an entry to CHANGES.md summarising the changes in this pull request. The entry should follow the same
style and format as other entries, i.e.

- Your summary here. (#XXX)

where #XXX should link to the relevant pull request. If you think that the changes in this pull request do not
warrant a changelog entry, please state it in your pull request’s description. In such cases, a maintainer should
add a skip news label to make CI pass.

6. Make sure all integration approval steps are passing locally (i.e., tox).

7. Push your changes to your fork

git push --set-upstream fork <YOUR-BRANCH-NAME>

8. Create a pull request . Remember to update the pull request’s description with relevant notes on the changes
implemented, and to link to relevant issues (e.g., fixes #XXX or closes #XXX).

9. Wait for all remote CI checks to pass and for a ridgeplot contributor to approve your pull request.

16 Chapter 6. Contributing

https://plotly.com/python/getting-started/#jupyterlab-support
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request
https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue

ridgeplot

6.3 Continuous Integration

From GitHub’s Continuous Integration and Continuous Delivery (CI/CD) Fundamentals:

Continuous Integration (CI) automatically builds, tests, and integrates code changes within a shared repos-
itory.

The first step to Continuous Integration (CI) is having a version control system (VCS) in place. Luckily, you don’t have
to worry about that! As you have already noticed, we use Git and host on GitHub.

On top of this, we also run a series of integration approval steps that allow us to ship code changes faster and more
reliably. In order to achieve this, we run automated tests and coverage reports, as well as syntax (and type) checkers,
code style formatters, and dependency vulnerability scans.

6.3.1 Running it locally

Our tool of choice to configure and reliably run all integration approval steps is Tox, which allows us to run each step
in reproducible isolated virtual environments. To trigger all checks, simply run

tox

It’s that simple !! Note only that this will take a while the first time you run the command, since it will have to create
all the required virtual environments (along with their dependencies) for each CI step.

The configuration for Tox can be found in tox.ini.

Tests and coverage reports

We use pytest as our testing framework, and pytest-cov to track and measure code coverage. You can find all configu-
ration details in tox.ini. To trigger all tests, simply run

tox -e py

You can also run your tests against any other supported python versions (e.g., tox -e py38). If you need more control
over which tests are running, or which flags are being passed to pytest, you can also invoke pytest directly which will
run on your current virtual environment. Configuration details can be found in tox.ini.

Linting

This project uses pre-commit hooks to check and automatically fix any formatting rules. These checks are triggered
before creating any git commit. To manually trigger all linting steps (i.e., all pre-commit hooks), run

tox -e lint

For more information on which hooks will run, have a look inside the .pre-commit-config.yaml configuration file. If
you want to manually trigger individual hooks, you can invoke the pre-commitscript directly. If you need even more
control over the tools used you could also invoke them directly (e.g., isort .). Remember however that this is not the
recommended approach.

6.3. Continuous Integration 17

https://resources.github.com/ci-cd/
https://git-scm.com/
https://github.com/tpvasconcelos/ridgeplot
https://github.com/tox-dev/tox
https://github.com/tpvasconcelos/ridgeplot/blob/master/tox.ini
https://github.com/pytest-dev/pytest
https://pytest-cov.readthedocs.io/en/latest/
https://github.com/tpvasconcelos/ridgeplot/blob/master/tox.ini
https://github.com/tpvasconcelos/ridgeplot/blob/master/tox.ini
https://pre-commit.com/
https://github.com/tpvasconcelos/ridgeplot/blob/master/.pre-commit-config.yaml

ridgeplot

6.3.2 GitHub Actions

We use GitHub Actions to automatically run all integration approval steps defined with Tox on every push or pull request
event. These checks run on all major operating systems and all supported Python versions. Finally, the generated
coverage reports are uploaded to Codecov and Codacy. Check .github/workflows/ci.yaml for more details.

6.3.3 Tools and software

Here is a quick overview of all CI tools and software in use, some of which have already been discussed in the sections
above.

Tool Cat-
e-
gory

config
files

Details

Tox Or-
ches-
tra-
tion

tox.ini We use Tox to reliably run all integration approval steps in reproducible isolated
virtual environments.

GitHub
Actions

Or-
ches-
tra-
tion

.github/workflows/ci.yamlWorkflow automation for GitHub. We use it to automatically run all integration
approval steps defined with Tox on every push or pull request event.

Git VCS .gitignore Projects version control system software of choice.
pytest Test-

ing
tox.ini Testing framework for python code.

pytest-
cov

Cov-
erage

tox.ini Coverage plugin for pytest.

Code-
cov and
Codacy

Cov-
erage

Two great services for tracking, monitoring, and alerting on code coverage and
code quality.

pre-
commit
hooks

Lint-
ing

.pre-
commit-
config.yaml

Used to to automatically check and fix any formatting rules on every commit.

mypy Lint-
ing

mypy.ini A static type checker for Python. We use quite a strict configuration here, which
can be tricky at times. Feel free to ask for help from the community by com-
menting on your issue or pull request.

black Lint-
ing

pypro-
ject.toml

“The uncompromising Python code formatter”. We use black to automatically
format Python code in a deterministic manner. We use a maximum line length
of 100 characters.

flake8 Lint-
ing

setup.cfg Used to check the style and quality of python code.

isort Lint-
ing

setup.cfg Used to sort python imports.

Editor-
Config

Lint-
ing

.editor-
config

This repository uses the .editorconfig standard configuration file, which aims
to ensure consistent style across multiple programming environments.

18 Chapter 6. Contributing

https://github.com/features/actions
https://about.codecov.io/
https://www.codacy.com/
https://github.com/tpvasconcelos/ridgeplot/blob/master/.github/workflows/ci.yaml
https://github.com/tox-dev/tox
https://github.com/tpvasconcelos/ridgeplot/blob/master/tox.ini
https://github.com/features/actions
https://github.com/features/actions
https://github.com/tpvasconcelos/ridgeplot/blob/master/.github/workflows/ci.yaml
https://git-scm.com/
https://github.com/tpvasconcelos/ridgeplot/blob/master/.gitignore
https://github.com/pytest-dev/pytest
https://github.com/tpvasconcelos/ridgeplot/blob/master/tox.ini
https://pytest-cov.readthedocs.io/en/latest/
https://pytest-cov.readthedocs.io/en/latest/
https://github.com/tpvasconcelos/ridgeplot/blob/master/tox.ini
https://about.codecov.io/
https://about.codecov.io/
https://www.codacy.com/
https://pre-commit.com/
https://pre-commit.com/
https://pre-commit.com/
https://github.com/tpvasconcelos/ridgeplot/blob/master/.pre-commit-config.yaml
https://github.com/tpvasconcelos/ridgeplot/blob/master/.pre-commit-config.yaml
https://github.com/tpvasconcelos/ridgeplot/blob/master/.pre-commit-config.yaml
https://github.com/python/mypy
https://github.com/tpvasconcelos/ridgeplot/blob/master/mypy.ini
https://github.com/psf/black
https://github.com/tpvasconcelos/ridgeplot/blob/master/pyproject.toml
https://github.com/tpvasconcelos/ridgeplot/blob/master/pyproject.toml
https://github.com/pycqa/flake8
https://github.com/tpvasconcelos/ridgeplot/blob/master/setup.cfg
https://github.com/pycqa/isort
https://github.com/tpvasconcelos/ridgeplot/blob/master/setup.cfg
https://editorconfig.org/
https://editorconfig.org/
https://github.com/tpvasconcelos/ridgeplot/blob/master/.editorconfig
https://github.com/tpvasconcelos/ridgeplot/blob/master/.editorconfig

ridgeplot

6.4 Project structure

6.4.1 Community health files

GitHub’s community health files allow repository maintainers to set contributing guidelines to help collaborators make
meaningful, useful contributions to a project. Read more on this official reference .

• CODE_OF_CONDUCT.md - A CODE_OF_CONDUCT file defines standards for how to engage in a commu-
nity. For more information, see “Adding a code of conduct to your project.”

• CONTRIBUTING.md - A CONTRIBUTING file communicates how people should contribute to your project.
For more information, see “Setting guidelines for repository contributors.”

6.4.2 Configuration files

For more context on some of the tools referenced below, refer to the sections on Continuous Integration.

• .github/workflows/ci.yaml - Workflow definition for our CI GitHub Actions pipeline.

• .pre-commit-config.yaml - List of pre-commit hooks.

• .editorconfig - EditorConfig standard configuration file.

• mypy.ini - Configuration for the mypy static type checker.

• pyproject.toml -

• build system requirements (probably won’t need to touch these!) and black configurations.

• setup.cfg - Here, we specify the package metadata, requirements, as well as configuration details for flake8 and
isort.

• tox.ini - Configuration for tox, pytest, and coverage.

6.5 Release process

You need push access to the project’s repository to make releases. The following release steps are here for reference
only.

1. Review the ## Unreleased changes section in CHANGES.md by checking for consistency in format and, if
necessary, refactoring related entries into relevant subsections (e.g. Features , Docs, Bugfixes, Security, etc).
Take a look at previous release notes for guidance and try to keep it consistent.

2. Submit a pull request with these changes only and use the "Cleanup release notes for X.X.X release"
template for the pull request title. ridgeplot uses the SemVer (MAJOR.MINOR.PATCH) versioning standard. You
can determine the latest release version by running git describe --tags --abbrev=0 on the master branch.
Based on this, you can determine the next release version by incrementing the MAJOR, MINOR, or PATCH.
More on this on the next section. For now, just make sure you merge this pull request into the master branch
before continuing.

3. Use the bumpversion utility to bump the current version. This utility will automatically bump the current version,
and issue a relevant commit and git tag. E.g.,

Bump MAJOR version (e.g., 0.4.2 -> 1.0.0)
bumpversion major

(continues on next page)

6.4. Project structure 19

https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions
https://github.com/tpvasconcelos/ridgeplot/blob/master/CODE_OF_CONDUCT.md
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/adding-a-code-of-conduct-to-your-project
https://github.com/tpvasconcelos/ridgeplot/blob/master/CONTRIBUTING.md
https://docs.github.com/en/articles/setting-guidelines-for-repository-contributors
https://github.com/tpvasconcelos/ridgeplot/blob/master/.github/workflows/ci.yaml
https://github.com/tpvasconcelos/ridgeplot/blob/master/.pre-commit-config.yaml
https://github.com/tpvasconcelos/ridgeplot/blob/master/.editorconfig
https://editorconfig.org/
https://github.com/tpvasconcelos/ridgeplot/blob/master/mypy.ini
https://github.com/tpvasconcelos/ridgeplot/blob/master/pyproject.toml
https://setuptools.readthedocs.io/en/latest/build_meta.html
https://github.com/psf/black
https://github.com/tpvasconcelos/ridgeplot/blob/master/setup.cfg
https://github.com/pycqa/flake8
https://github.com/pycqa/isort
https://github.com/tpvasconcelos/ridgeplot/blob/master/tox.ini
https://github.com/tox-dev/tox
https://github.com/pytest-dev/pytest
https://coverage.readthedocs.io/en/latest/index.html
https://semver.org/
https://github.com/peritus/bumpversion

ridgeplot

(continued from previous page)

Bump MINOR version (e.g., 0.4.2 -> 0.5.0)
bumpversion minor

Bump PATCH version (e.g., 0.4.2 -> 0.4.3)
bumpversion patch

You can always perform a dry-run to see what will happen under the hood.

bumpversion --dry-run --verbose [--allow-dirty] [major,minor,patch]

4. Push your changes along with all tag references:

git push && git push --tags

5. At this point a couple of GitHub Actions workflows will be triggered:

1. .github/workflows/ci.yaml: Runs all CI checks with Tox against the new changes pushed to master.

2. .github/workflows/release.yaml: Issues a new GitHub release triggered by the new git tag pushed
in the previous step.

3. .github/workflows/publish-pypi.yaml: Builds, packages, and uploads the source and wheel pack-
age to PyPI (and test PyPI). This is triggered by the new GitHub release created in the previous step.

6. Trust but verify!

1. Verify that all three workflows passed successfully: https://github.com/tpvasconcelos/ridgeplot/actions

2. Verify that the new git tag is present in the remote repository: https://github.com/tpvasconcelos/ridgeplot/
tags

3. Verify that the new release is present in the remote repository and that the release notes were correctly
parsed: https://github.com/tpvasconcelos/ridgeplot/releases

4. Verify that the new package is available in PyPI: https://pypi.org/project/ridgeplot/

5. Verify that the docs were updated and published to https://ridgeplot.readthedocs.io/en/stable/

6.6 Code of Conduct

Please remember to read and follow our Code of Conduct.

20 Chapter 6. Contributing

https://github.com/tpvasconcelos/ridgeplot/actions
https://github.com/tpvasconcelos/ridgeplot/tags
https://github.com/tpvasconcelos/ridgeplot/tags
https://github.com/tpvasconcelos/ridgeplot/releases
https://pypi.org/project/ridgeplot/
https://ridgeplot.readthedocs.io/en/stable/
https://github.com/tpvasconcelos/ridgeplot/blob/master/CODE_OF_CONDUCT.md

INDEX

G
get_all_colorscale_names() (in module ridgeplot),

10

R
ridgeplot() (in module ridgeplot), 9

21

	Dependencies
	Getting started
	Sensible defaults
	Fully configurable

	API Reference
	Changelog
	Unreleased changes
	0.1.19
	0.1.18
	0.1.17
	0.1.16
	0.1.14
	0.1.13
	0.1.12
	Internal
	Documentation

	0.1.11
	0.1.0

	Alternatives
	Contributing
	Development environment
	Pull Request Workflow
	Continuous Integration
	Running it locally
	Tests and coverage reports
	Linting

	GitHub Actions
	Tools and software

	Project structure
	Community health files
	Configuration files

	Release process
	Code of Conduct

	Index

